

A Database System To Support a Self-Service Email Marketing System 

�1

Author:
Ali Kiyan

Assessor:
 Dr Mohamad Saraee

April , 2017

Introduction

EffectMail-EFM is a self-service email marketing software solution providing free and paid
plans for enterprises. In this essay, various areas regarding database designing will be covered
such as using database-independent documentation technique the entity relationship diagram,
views, stored procedure, system functions, user-defined function, triggers and SSIS packages
for getting files from user. Possible security solutions and backup policy for the system will
be discussed. Business Intelligence techniques such as SSRS and SSIS will be used for
reporting and adding packages to database respectively.Also probable concurrent transaction
scenarios and the way they can be tackled will be discussed as concurrency control for efm.

In this essay, SQL Statements are just for demonstration purposes and the comprehensive list
of statements for designing the whole schema can be found in the attached text file with this
essay.

�2

1.1 Preliminary database design for EffectMail

The formal way in which we express data relationships to a DBMS is known as data model
and the data model that has been used for efm is relational data model.It is worth mentioning
that Relational databases have a certain amount of data redundancy which is in the form of
copies of primary keys (or candidate key) acting as a foreign keys.

1.1.1 Entity relationship modeling

First, for have a better udenderstanding of data relationships and characteristics of the given
domain, an independent-DBMS documentation technique called entity relationship diagram
with Chen notation has been used. This diagram provide better overall understanding of
domain of interest.

Figure 1.1 Entity relationship diagram for EffectMail

�3

efm_account

efm_user

efm_plan

efm_campaign

efm_campaign_status

efm_contact

efm_user_role

efm_campaign_t
emplate

Lastlogin_time
stamp

TypeMode

Company
_Name

URL_Address

Phone_
Number

Add

Has

Has

Role
_ID

Description

rolename

Schedule
_Type

First_
Name

Last_
Name

email

Has

Has

Has

Template_ID
HTMLandCSSdocs

Device_
type

numOfForwards

numOfOpen
isComplete

Campaign_ID

numOfUnsubscriber

Description

isConfirmed

Name

numOfSubscriber

Price

numOfEmail

Plan_ID

Has

First_Name

Last_Name

isActive

Creation_Time

efm_subscriber_list

email

NAccount_ID

HasUsername

MD5

N

User_ID

numOfSubscriber

numOfContact

N

N

N

N Name

numOfContact

Email

Contact_ID

numOfClick

efm_bounce_stats

SMTP_errorshort_description

isActive

efm_linkset
Has

Link

N

Type

Has

efm_file
AddN

File_type

File_ID

Creation_Time

Stored_File

Creation_Time

Linkset_ID

Tname

efm_custom_style

Has

N

Imageicon

noerror

Schedule_Date

manualNumOfContact

Has

M

N

1.1.1.1 Relationships

Each relationship between entities can be divided to 3 following type :

1. Many-to-One relationship

2. One-to-One relationship

3. Many-to-many relationship

For example each account can have many users but each user can only belong to one account
so the relationship between account and user entity will be one-to-many relationship while in
relationship between account and subscriber list each account have one subscriber list and
each subscriber list belongs to one single account so the relationship is one-to-one in this
case.

Determining the multiplicity determines how key are transferred between tables. In one-to-
many relationship the primary key from one table is transferred to many tabled as foreign key
and in one-to-one relationships a key from more important entity is transferred to the other. In
many-to-many relationships an intermediate table containing both primary keys of both tables
will be considered. This table contains two group of attribute. One, primary key(s) from the
first table and two, primary key(s) from the second table and all attributes in this table are
considered as both primary key and foreign key.
The relationship between contacts and campaigns is many-to-many so in designing the
schema, another intermediate table will be added containing primary key of both tables.
Notice :
• For avoiding recurring statements, we will not describing the whole attributes and their

datatype, keys,Relationship type and how they are chosen in each case.
• Since both entity and table share the same concept in different area (ERD and

Schema) ,as of now they are used interchangeably.
• The domain keys are the keys that have a meaning in a domain of interest and can specify

each tuple. (sometimes one key can specify a tuple and sometime multiple of them)
 These keys can be used if they do not occupy large amount of storage and if they occupy
 large space another type of key (AI) will be used which will be later discussed in this
 report.
• The default implementation for relationships is one to many, but one-to-one relations can

deployed by setting the value of foreign key as unique in the child table and considering
the key from the more important table.

�4

1.1.1.2 Designing entities, entities’ attributes and entities’ interconnections

For account table, MD5 is for getting hashed password input from user and lastlogin_
timestamp gets the timestamp of the server for having the last login time(Temporal database
concepts considered in some table throughout the database design). It has Typemode attribute

for getting the value of premium or free or other type of account in the future (upward
compatibility). For understanding whether an account is activated or not isConfirmed boolean

flag can be used and front-end developer can just check this value for understanding which
users are active. valid company name, phone number and URL of the company are needed as
well but they can be provided later so these attributes are nullable.

Email attribute is the one that appear in the from section in the campaign because multiple
users can be added by account but in campaign the email of certain account should be shown.
Each account can have subscriber list for sending newsletter or new offers to people who

want this service, this is different than contacts which define by user and related to campaign.
Each account can have one plan and in this table first check the isConfirmed flag in account
table is checked and if it was true, it would allow account to have plan id of premium plans.

In user table, is active determines whether a user is active and last name attribute will be used
in campaign to specify which user has sent certain campaign to contacts. User table can
upload one or multiple contact CSV file which will be stored in file table and will be

imported as SSIS package to contact table later. The user can upload the contact manually by
adding them to contact table and spCountSubscribers stored procedure can return the total
count of this contacts with subscriberCount output or trsubscriberCounter trigger can

populated the value of numOfContact automatically whenever the user adds another contact
to the contact table. In other case, manualNumOfContact can be taken manually from user for
checking whether the user is eligible to use special backend tool. The account can give user

different roles which limit their permission and this permissions defines in user role table. In
this table different roles with different limitations can be imposed. 4 different roles has been
defined which can be expanded in the future but for security reason they can only be added

by database admin.

�5

figure 1.2 different roles for users

The user can have campaigns and can search through history of campaign using campaign id
or datetime which later will discussed more in depth. The campaign has schedule type for
scheduling a campaign for a certain date and schedule date stores the date which campaign is

going to be sent. All the information in pop-up window of campaign can be either in
campaign table itself or by joining it with related tables (user and account). Each campaign
has a campaign template which contains HTML and CSS Codes for a template page and

device type which denotes this template is related to which type of device like tablet or
phone. The User can manipulate the outline of the campaign by adding SVG social buttons,

images and they are stored in custom style table.If the user is happy with campaign and pop-
up summary, campaign can be sent and if it is sent to all recipient the no error flag will be set.
After sending the campaign there are various ways to keep track of the campaign and monitor

status of the campaign.

Campaign status table store data about unsubscribed contacts and forwarded times of

campaign.
Each Campaign can have one or more contact and the relationship between campaign and contact is
considered many-to-many, so in some cases a campaign can use contacts of other users as well and as
mentioned, an intermediate table with both tables primary keys is considered for implementing this.
(We have used many-to-many relationship for more flexibility of database and if each user had to
access only his/her contacts there should not be any intermediate table and the relationship between
contact and campaign would be one-to-many.)
One of the handy features of efm is providing a heat map for keeping track of the mouse of the user.
Heat-mapping analysis can enhance UX. Although it can provide hover maps in which the mouse
hovering pattern is represented, efm is more focused on a representation for showing all the clicks
especially clicks on link sets.

�6

Figure 1.3 Heatmaps can boost user experience
(picture from http://pixelmarketing.net)

http://pixelmarketing.net
http://pixelmarketing.net

Information from heat map, namely number of clicks and opens for each link will be stored in
link set table. In this table each link in the campaign can have two attributes of numOfClick
and numOfOpen.

Depending on the mail server that has been used there are certain codes which you will get
from recipient mail server denoting whether the mail submission has been successful. An
email bounce signifies failed e-mails and in this case there are two type of bounces.

1. Soft Bounce :

It indicates that the email address is valid and reached to the recipient mail server but it

bounced back for other reason.

2. Hard Bounce :

It indicates that there is a permanent issue with recipient email address. It means, either

recipient email address is not valid and it has been permanently rejected by the server.

Bounce stats table stores these type of data for each emails providing the delivery status of a
campaign.

In following figure 1.4 bounce stats table of efm has been shown and for better
implementation type 0 defined as soft bounce and type 1 defined as hard bounce.

In efm service, in plan the policy of company is either has unlimited e-mails for paid plans or
500 e-mails for free plans so a bit datatype could have been used but for upwards
compatibilities purposes int datatype has been used for providing more options in future.

�7

Figure 1.4 Bounce stats table in efm

1.2 Designing database schema

1.2.1 Defining datatypes

Choosing appropriate datatype not only improve storage and overall performance, but it also
improves data integrity by ensuring correct input has been inserted into database (even for

security purpose)for example, bounce code for SMTP bounce code are always 3 digit code so
CHAR(3) has been used as a integrity constraint as well as a place holder.

To avoid stating the obvious, not all the attributes will be covered.

- Since phone number is always 10 digit and a 10 digit datatype has been considered.

- bit datatype is equivalent of boolean in T-SQL.

- Varchar has been used for those character name with varied name.

- Timestamp is for getting a time of the server and since it is not human readable time
format, at times, we need to using conversion system functions like CONVERT to change
the timestamp format to a date time format which can be compared with other attributes.

(for example this happened at searching through campaign by date section).

- Nvarchar is for unicode name where there is a possibility of other languages.

- Text is the same as Varchar(max) and both can store up to 2GB

- Small money has been used for price and can store up to 4 byte values.

- Datetime has been used with millisecond precision.

Suggestion: according to MSDN timestamp datatype is deprecated and it is better to use
rowversion but since this datatypee has been used in other databases and for readability
purpose, timestamp datatype has been used.

�8

1.2.2 Integrity Enhancement

Integrity Control and Enhancement consists of constraints that are imposed to prevent
inconsistency. In efm 4 type of constraints have been employed :

3. Required data :
Due to the needs of the client, not null or nullable variable should be employed for example
in account table the account should have username to login to or shown on from part of
email.

4. Entity integrity :
The primary key of the table should be unique and Entity Integrity ensures that primary key
is unique by setting it as not null attribute and making it a unique attribute.

5. Referential integrity :
Referential Integrity means that the value must refer to a valid primary key or it can be null
and SQL will reject any attempt to UPDATE or INSERT a value that violating this constraint.
In UPDATE and DELETE operation in parent table SQL acts differently according to
referential action that can be modified on ON UPDATE and ON DELETE subclass of
FOREIGN KEY clause or it can be modified using GUI in foreign key section.
There are 4 type of option regarding the action to be employed in case of deleting a primary
key in the parent table and its effect on child table :

• CASCADE
 Both primary key and foreign key are deleted
• SET NULL
 Put a null value on child table’s foreign key
• SET DEFAULT
 Put the default value of foreign key
• NO ACTION
 Rejecting any deletion from parent table

In efm NO ACTION option has been used for all the foreign keys

�9

1.2.3 Auto key

As mentioned earlier, domain keys can unique the tuples of a table by having a unique
semantic in the domain of interesting and sometimes they can be a combination of different
attributes to specify a certain tuple. In this cases, database offer a technical key called “auto
key”.
Auto key is an integer number that can be incremented or decremented to provide a unique
number for a tuple. Auto key can be used instead of combination of keys or those keys that
occupy large amount of space.

Suggestion :

Some may argue that using technical keys instead of domain keys can compromise the
readability which is a true statements but they offer better performance as well.

1.2.4 Designing

With attributes and their datatypes, relationship between them, primary key and foreign keys ,
database can be created by writing T-SQL statements. All of the statements are available in T-
SQL text file. Sometimes for amendment SQL Server GUI can be used for alter Tables and

their connections.

�10

1.2.5 Normalisation

Normalisation is database design techniques examining the relations (functional
dependencies) between attributes and even entities. In other words, Normalisation uses
different tests to help identify optimal database design.

There are two main approaches for using normalisation. The first one is using a buttom-up
standalone technique which is how to normalize data from the beginning and is used in the
creation of efm service. The second approach on the other hand, shows how normalisation
can be used as a validation technique to check the structure of the database and relations and
which may have been created by a top-down approach before.

It is important that the database is normalized because :

• It suggest the minimal attributes to comprehensively support the sets of data for the
enterprise

• It suggest a design that has minimal redundancy in the way that in the way that each
attributes only describes once except for foreign keys (which are essential for joining
database’s tables)

• It prevents inconsistency throughout the database
• Updates of the stored data on the database are done by minimal operations
• They cause final reduction in the file storage space

Levels of Normalisation

Normalisation consists of 7 different levels and before mentioning these level there are some
concepts that should be covered.

�11

A B

Figure 1.5 Functional

Functional dependency is mentioned when A and B are attributes (Or can be group of
attributes) and B is functionally dependent on A if each value of A only associates with one
value of B.

Determinant

In the functional dependency the left side of the the relationship is determinant.

Full Functional dependency

In the above relationship, B is fully functionally dependent on A if B is functionally
dependent on A, but not dependent on any proper subset of A.

Transitive Dependency

If A ® B and B ® C, then C is transitively dependent on A through B.

Unnormalised Form (UNF)

A table that contains one or more repeating group

First Normal Form (1NF)

The intersection of each row and column contains one and only one value in other words
there should not be any multi-valued in the table.
Multi-valued attributes can be transferred to another table with one-to-many relationship.

Second Normal Form (2NF)

A relation that is 1NF and every non primary-key attribute is fully functionally dependent on
the primary key.

Third Normal Form (3NF)

A relation that is 1NF and 2NF and no non-primary-key attribute is transitively dependent on
the primary key.

�12

There are more 4 levels of normalisation after 3NF, namely BCNF, 4NF and 5NF and DKNF
but due to some reason in most of real word database designs they are not deployed.
Firstly, they have impact on overall performance of the system. Secondly, They may facilitate
some statements(for example UPDATE) but in some common statements they are relatively
slow (for example, READ) and all in all they function better at UPDATE and unsatisfactory
in retrieval statements. They are not provide maximum processing efficiency and sometimes
due to the problems mentioned the database design is denormalised from a higher level to a
lower one.
In efm database design is only normalised until 3NF.

Suggestion :

Some database designers believe that it is better to normalized the data until it starts to have
major problems and the denormalise to have the most optimal database design.

Look up tables can be used for static lists like city or country names and can be used in
multiple places and sometimes they referred to as data dictionary. They provide a higher level
of abstraction with overhead as well.

�13

 Figure 1.6 efm Schema

Figure 1.3. is final schema for efm service after normalisation to 3NF and adding Auto key
instead of lengthy and multiple primary keys. Now each level of normalisation is discussed in
efm service.

Notice :
Due to the experience of the designer of efm database, top-down normalisation approach
has been selected for normalisation. For example if bottom-up had been selected, in
account table, all the attributes of plans table would have been in the account table and
then due to the 3NF and transitive dependency of attributes of plan table on plan plan
name, it had to be separated in a table.
Due to the mentioned characteristics of “Auto Increments” ,they have been used
throughout the database design.
It is worth mentioning that a relation with single value primary key is automatically 2NF
and since all of the tables of efm has single-value primary key, they are all 2NF.

In Account table, phone_Number has the potential of being multi-valued attribute and should
have been separated in another table but efm ask their clients to just provide one phone
number but Subscribers’ email could be multi valued so they are separated in another table
called efm_subscriber_list. (1NF)
URL_address of the company can be transitively accessed through Company name but there
is a chance that the URL of company change so due to better performance new table for
URL_address is ignored.
plan table does not have any multi-valued column (1NF) and there are no transitively
dependent attributes to primary key (3NF).

In the user table all attributes all single-valued (1NF) and there are no transitively dependent
attributes.(3NF)
User_role does not have any multi-valued attribute (1NF) and all of non-primary attributes
are not transitively dependent on role_ID.(3NF)
In the file table all attributes all single-valued (1NF) and there are no transitively dependent
attributes.(3NF)
In the contact table all attributes all single-valued (1NF) and there are no transitively
dependent attributes.(3NF)
Campaign table does not have multi-valued attributes (1NF) and any determiner non-primary
attribute.(3NF)
Campaign_template table does not have multi-valued attributes (1NF) and transitively
dependent attribute(3NF)

�14

campaign status and bounce status were both two multi-valued attributes which transferred
to another table respectively and both of them do not have any multi value attributes and any
transitively dependent attribute(3NF)
Custom_style table does not have any multi-valued attribute(1NF) and there is no transitively
dependent attribute(3NF)
Linkset table does not have any multi-valued attribute(1NF) and there is no transitively
dependent attribute(3NF)
Lastly, calculator does not need primary key due to its characteristics so 2NF and 3NF are not
arguable at this point and there is no multi-valued attribute so this table is 1NF.

�15

1.3 Other features of efm

1.3.1 Stored Procedures, Views, Triggers, User-defined Functions and
System Functions in efm

Stored Procedure

Efm allows searching through the history of campaigns by entering the date value and
returning all the campaigns before that date. For Example the following expression returns all
the campaigns before the mentioned date and since this command is used every day by IT
staff an stored procedure has been considered and in the stored procedure a view has been
used to have all the information related to campaign at once.
spcampaignhistorysearch '2018-01-01 00:00:00’

The key point is that when client enters the date through GUI is not the same format as the
Creation_Time which is Timestamp so for comparing these two one of the should be
converted to the other’s datatype. The respective T-SQL code would be like this :

CONVERT(datetime,Creation_Time,121)

In this code, 121 is ODBC Canonical standard for providing the right format for
Creation_Time to fit in datetime datatype.

Campaign can be searched by their id (using an input in stored procedure) and this is provide
by spcampaignsearchById.

There is a handy stored procedure for facilitating the activation/deactivation of users by
getting the userID and activation type. Since activation of user is common in efm ,
spuseractivator is going to be used numerous times. The following syntax set user with id 6 :
Spuseractivator 6,1

�16

Searching through subscribers is a requirement for efm service, and this is met by
spSearchSubscribersByEmail stored procedure which takes an Email as an argument an then
search whether that is exists in contact table. (Note that we have another table called
subscriber list which is different than contact table and subscriber list is the list of people who
have left their email for newsletters of company).

The number of contacts (subscribers) are important to efm company and there are different
ways to have that total number and as mentioned we used two ways. First by having
spCountSubscribers stored procedure that can pass the total number with @subscriberCount

output variable and another way is by using trigger which will be discussed later i trigger
section.

When the user click send button in the front end part, three parameter should be stored and
post to database. 1.Account ID 2.UserID 3.Campaign ID. These three parameters are sent to
spPopup stored procedure as argument and the store procedure provides, from email, last

name of the sender of email and title of contact and number of email that the campaign and
send them back to front end part to be used in pop up window.

View
Subscriber list is different than the email list but sometimes it is handy to have them in one
place for example for sending an important news to people who have somehow interested in
company either by putting their email on subscriber list or by including in on user’s contact

list, so efm has considered a view combining both tables.

There is another view that allows having all the the users even without those without roles to
have an understanding about all the users.

There is another view as campaign_full view which joins all tables related to campaign to
keep all the data related to campaign table in one place and it can be used in different place
like in other stored procedure.
Triggers

Triggere are defined within the table and in efm for number of contact two triggers have been
defined. One trigger for getting the number of contact from contact table and inserting it to

�17

user table(trsubscriberCounter) and one trigger for getting the number of emails of campaign
which is extracted from efm_campain_contact table(trcampaignsubscribercounter). These
two table functions almost the same and they update the numofcontact attribute when some
contact is inserted. (It uses for insert key word and inserted temporary table which is created
whenever something adds to the related table)

truserSubscriberCounter is a trigger that can populate the numOfConcat value of each user
whenever that user adds a contact in contact table which is handy because it can be used as
another feature to for example users that have more than 2000 can use certain tools.
For security reason, the acccount should be confirmed and if its not confirmed the
trconfcheck trigger does not allow insertion to the table and roll back the transaction.

There is another trigger called TRplan trigger which controls the number of subscribers and
number of emails that each user according to his/her plan can have.

USER DEFINED FUNCTION

For the calculator part the user key in the number of subscribers and the user defined function
returns proper plan name and due to policy of the company that the number of subscribers
should be limited to 2000 subscribers per month, proper datatype has been chosen.

For checking the user defined function if it is table valued function it can be on from clause
in select statement or if it is scalar function name it can be in select statement or where
clause.In the calculator it can be checked by following code :

Select Planpricecalculator(345) ==> minimumplan

The user enters the number of subscribers, so there should be a table that stores that data and
then after calculating the plan store it in database. This table called efm_calculator and since
it is not necessarily related to any other tables it can be an isolated table.
There no join and any connection in this table so in this special case the primary key can be
left out.
Notice : Calculator can be implemented by programming (without using database) and an
isolated table has been created just as a possibility.

�18

Notice :
For security purposes it is better to encrypt stored procedures so they cannot be viewed
thereafter with option WITH ENCRYPTION when defining an stored procedure but since in
this assignment stored procedure should be viewed, WITH ENCRYPTION option has not
been used.

Notice :

cout(emial) could be deployed without using output variable but it could not be accessed
elsewhere so output put variable has been used and in case of using output variable in your
stored procedure, you should declare a variable as output as a placeholder of the output of
your stored procedure. The T-SQL code would be like this for printing out the number of the
entire contact list.

DECLARE @TotalSubscriberCount INT
Execute spCountSubscribers @subscriberCount = @TotalSubscriberCount out
print @TotalSubscriberCount

SUGGESTION :

Sometimes it is a good practice to use system store procedures to have better control over our
system. Here “sp_depends Table name” can be used to check whether there are dependencies
and if there are some stop for example deletion of that table.

�19

1.3.2 Security

Security is of paramount importance and efm provides security in various ways.
Since efm can have different database users it can be secured by granting or denying
databased permissions to different database users and then those roles can be assigned to
different database users, but there is only one DBA at the efm for the time being so that
person is sysadmin and have all the permission. In future, if the company hires more database
users, it can be more secured by limiting the access of database principals. This can be done
by GUI in security folder or T- SQL CODE A sample code would be like this :  

USE efm
GO
DENY SELECT ON efm_campaign TO [SECOND-ROLE]
GO
second role can be assigned to any multiple users.

You can give each department users which are not familiar with T-SQL queries a view to
tables that contains all the joins and conditions to first provide them with related information
and second restrict their access to view all rows which is commonly called row level security.
Column level security can be deployed as well by eliminating the column from select clause.
You can restrict users to aggregating data as well by using aggregating function in select
clause.

Encryption can be used in different parts of database like in stored procedure or in the time of
performing a backup.

Sql Injection can be a threat for the database if the entered query is handled hard-coded and
dynamically.
There are two different approaches to tackle this issue :
1. Using parametrized queries
2. Using stored procedure

Using parameterized query to prevent sql injection

In this approach instead of using like ‘ in the hard-coded part of query, @sampleparameter
can be superseded and then by declaring this parameter we can have the entered value in the
@sampleparametr parameter. The way it implements is that an escaped statement executed by
SQL server system stored procedure called “sp_executesql”

�20

for example in case of example the the statement would be like this :
exec sp_executesql N’Select * from sample where samplename like @sampleparameter’ ,
N’@sampleparameter nvarchar (41)’ ,
@ProductName=N’ escaped enterned value’

Using stored procedure to prevent sql injection
This approach is like the previous one but instead of calling a system stored procedure, we define
the stored procedure with parameter and then the SQL Server will escape the entered string and
treat it as a value not statement

 spsample

Create procedure spsample
@sampleparmeter nvarchar(50)
as
begin
 Select * from sample where samplename like @sampleparameter
end

�21

1.3.3 Concurrency Control

The efm is designed to minimum the concurrency issue and there is a lot any many-to-many
relationships in efm schema and most of the time a table is not changed by multiple users at
the same time but still there is a fair chance that two transaction run by a user or account and
in campaign_contact table which is intermediate table for many-to-many relationship there is
possibility of concurrency issues since multiple users can change data of this table.
In case of querying the database or updating table’s values in transactions there would be
different occasion where data could be inconsistent.
Concurrency problems can occur throughout the efm database if two transactions try to
change a data.
In Dirty read issue the value that has been queried by select statement can be changed by
rolled back transaction which results in misleading value.
In efm, when a user is adding or updating a contact or a new campaign or new custom style
there is a possibility that another transaction is reading from the same tables at the same time.
In this case, if the first transaction is rolled back, the data that is read by transaction 2
simultaneously is incorrect.
Lost update is happening when two transactions are trying to update the same value and the
data can be inconsistent since the transaction that commits later is overwriting its value
disregarding the updated value of second transaction.
In nonrepeatable read issue, a transaction reads a data and at the same time the second
transaction updates the data for example change the campaign name and its error status of
campaign and then if the first user wants to read the table for the second time it gets different
value in the same transaction.
In phantom read the first transaction is reading a range of rows and at the same time another
transaction add another row in between the range of read rows by the first transaction and
then the first transaction gets different rows in the same transaction. (same as the
nonrepeatable read but in row row level)

All of these issues can be tackled by an isolation level of sql server which is illustrated in
table 1-3 .
It is worth mentioning that as we of higher in isolation level then number of concurrent users
will plummet but in snapshot isolation level unlike the other levels there is no lock in
transactions and it is implemented by versioning in tempdb so the number of concurrent user
is improved in comparison serializable isolation table.
Due to the importance of consistency of the data in efm, snapshot isolation has been selected
so that concurrency issue become minimum and the number of concurrent users become
maximum.

�22

As mentioned before all the concurrency issues happens when two or more transactions are
running simultaneously for example, in dirty read issue in read uncommitted isolation level
the syntax for two transactions is as below.
Transaction one tries to update the template id for campaign with ID of 4 and then for an
error it is rolled back. Meanwhile, another transaction tries to read the template ID for
campaign with the ID of 4 and in this case with following syntax dirty read will happen
because the template ID will go back to its previous value when the transaction one is rolled
back.

TRANSACTION ONE

BEGIN TRANSACTION

Update efm_campaign SET
Template_ID=2
WHERE Campaign_ID = 4
 .
 .
 .
ROLLBACK TRANSACTION

In this case transaction selects template ID of 2 but the real consistent value is the the default
number for template ID which is 1.

Table 1-3-3 Concurrency Issues and isolation levels in SQL Server
Isolation Lavel

Concurrency Issue

Dirty Reads Lost Update Nonrepeatable
Reads

Phantom Reads

Read Uncommitted

Read Committed

Repeatable Read

Snapshot

Serializable

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

�23

TRANSACTION TWO

SET ISOLATION LEVEL READ
UNCOMMITED

SELECT Template_ID from campaign where
Campain_ID =4

1.4 Business Intelligence

Business intelligence is an umbrella term for referring to collecting and analyzing data and
technologies used in this process which is facilitate corporate decision makings. Efm uses

business intelligence techniques to enhance its functional capabilities. It uses SSIS packages
for importing files to database and SSRS for getting a report from certain tables.

1.4.1 Importing Contacts using backend tool (SSIS Package)

In efm service, users can upload their files into the database and the manualNumOfContact
attribute is checked by front-end software team to see whether they are eligible for using
SSIS packages or not. (It could also check numOfcontact as an extra feature.)
In case of eligibility, their uploaded CSV file imported to contact table.
Notice : For demonstration purpose, the content of contact table has been removed and
user_ID is not provided in CSV file so imported contact by SSIS package can be visible in
contact table.
There are multiple ways of Importing data CSV file into database. Two of them demonstrated
as following:

1. Importing data using SQL Data Tools

First New Integration Service Project should be created in SQL Server data tool and in
Control Flow tab for simplicity just data flow task add and in data flow from SSIS Toolbox
flat file source and OLE DB Destination(Microsoft API for allowing access of data from
different sources)are added.
In Flat File editor, new connection is created and in browse section, CSV Contact is selected.
On the left hand side of the same window there are 2 options that need to modified. In
column section comma is chosen for delimiter and in advance section encoding for each
attributes would be unicode string. Then Flat file is matched to OLE DB destination.
In OLE DB new connection is established by specifying server name and using SQL server
authentication, providing password and choosing efm as database. Next, Destination table
efm_contact is selected. Then the mapping can be chosen for checking. Ultimately, run the
package and the CSV data will be imported.

�24

Notice : The encoding is important in this section because the imported CSV file is in
unicode format so either the related attribute in efm_table should be unicode as well or the
data conversion in data flow should be added.

�25

Figure 1.8 Adding Data

Figure 1.7 Selecting unicode encoding for

Note that the Rows with “Null” values in User_ID are imported by SSIS package and NULL
is just selected for emphasising that these contacts are imported by SSIS package otherwise
user_ID should be provide in CSV file and therefore there was not NULL in user_ID column

�26

Figure 1.9 Completed package using unicode

Figure 1.10 Appended value of selected csv file into efm_contact table

2. Importing data using SQL Server Import and export wizard.
In this method, the backend staff right clicks on database and in Task selects import data and
then chooses the flat file as data source. In this window delimiter and encoding for each row
can be modified. In case of csv file comma as delimiter and used non unicode encoding for
attributes is selected.

Native SQL Server and server name is selected and the authentication and database is
correctly is filled.

�27

Figure 1.11 Choosing csv file

Figure 1.12 Destination Table for importing CSV file

In the next window for appending to existing table of contact, destination efm_contact is
chosen. Then in edit mapping append rows to the destination table is checked.

After running this package, All the contents for CSV file is appended to User’s Contact list
and by outputting the content of efm_contact this can be proved.

Null user denotes that the related content is imported by backend tool for demonstration
purpose and in reality user_ID should be provided.

�28

Figure 1.13Appending CSV contents to the existing table

Figure 1.14 Appended CSV data at the end of efm_contact table

1.4.2 Using SSRS for reporting

efm uses business intelligence platform SSRS for reporting campaign statistics and Users’
information. First a new Report Server Project and report is created. Either shared or

embedded data source can be used and efm is using embedded data source.

1.4.2.1 Reporting users’ information

Next data set is created. The values has been keyed in as below and in the query section the
the needed information about the users has been queried.

�29

Figure 1.15 Creating embedded data source in user report

Figure 1.16 Data set Window in user report

 Then, from the tool box pane, table dragged to designing window and and now all the tables
that added in data set can be added in the table.
Lastly, the window can be customized and previewed and then saved.

�30

Figure 1.17 Users’ information report layout

1.4.2.2 Reporting Campaign statistics

Most of the steps are like the previous report except for some parts.
The query part which contains more tables since campaign statistics are spread through
different tables.
In campaign report the time that the campaign has created is shown by CONVERT system
function in query statement for changing timestamp value to human readable datetime
format. campaign reports.
Lastly, the time of the report is logged and can be seen at the top right hand side of the report.

�31

Figure 1.18 Designing the query for campaign statistics’
dataset

At the end, the report service should be established by running report service configuration
manager and copying the report server URI like the following picture and pasting it into
Target server URL of the project and then after running the report, it can be available on local
reporting server and can be seen in the browser. (Although there are different ways of
outputting it with SSIS in PDF or email or Sharepoint)

�32

Figure 19 Campaign statistics

�33

Figure 1.20 Reporting services configuration
manager for running report server and its URL

Figure 1.21 The output report result in the browser

�34

1.5 Backup

Efm takes backup and recovery seriously for availability purposes. When the designing of the
project is finished, Full backup will performed and then for maintainability purposes it does a
differential every 4 night at 10 PM and transactional backup every night at 10 pm. This jobs
ensures that data is available through the database lifecycle.
Since creating both job are almost the same one of them (Differential backup) will be
explained and difference will be explained in the Transaction log backup).
After opening Maintenance Plan Wizard in SSMS, the setting would be like this.

Then differential backup and efm database will be selected and the setting will be as the
following picture.

�35

Figure 1.22 SSMS job Schedule for Differential Backup

The Backup job for transaction log would be the same except in the following settings.

�36

Figure 1.23 Different settings for Differential Backup

Figure 1.24 Differential back up info

It is
worth mentioning that there is another way to create scheduled jobs in SSMS by adding new
job on object explorer and using this T-SQL statement to create first a full backup and then
differential backup.

BACKUP DATABASE efm
 TO DISK = N’C:\EFM_Backup\efm.bak'
 WITH INIT,
NAME = N’efm full backup‘

GO

BACKUP DATABASE efm
 TO DISK = N’C:\EFM_Backup\efm.bak'
 WITH DIFFERENTIAL,
NAME = N’efm differential backup‘
GO

�37

Figure 1.26 Transactional log info

and for transaction log the statement would be :

BACKUP LOG efm

TO DISK = N’C:\EFM_Backup\efm.trn’

NAME = N’efm transaction log backup‘

GO

and the other steps are almost the same as before.

1.6 Restore

Depending on the type of RPO policy of a company different timing can be set for 1

automated backup. In elm service as mentioned beside the full backup every 4 night there is a
differential backup and every night there is a transactional backup. In the event of disaster in
different scenarios we can restore these backups.
The process of restoring the database is almost the same for three type of backup files but it is
important that a tail log backup should be performed before any other step and for
restoring .trn file or transaction log file the database should be in restoring mode.

By right click on preferable database and choosing restore from task, restore window
prompts. In this window we can choose the type of backup that are available or we can use
new timeline feature in SQL Server 2012 and newer. Then for restoring a single file
RESTORE WITH NORECOVERY should be selected in option tab and for restoring

 Recovery Point Objective 1

�38

multiple backup files RESTORE WITH RECOVERY should be picked. To ensure that all the
connection are closed in recovery time we can chose related option in option tab.
To ensure that the backup file has been restored successfully we can choose with checksum
option and for ensuring that backup is not corrupted and able to be restored we can use
RESTORE VERIFYONLY option.

References

Connolly, T., Carolyn, B. (2015). Database systems A Practical Approach to Design,
Implementation, and Management. 6th edn. Edinburgh Gate, Harlow, Essex: Pearson
Education Limited.

L.HARRINGTON, J.(2002). Relational database design. 2nd edn. London: Academic Press.

http://pixelmarketing.net (Accessed: April 2017).

�39

http://pixelmarketing.net

